平成29年電気学会 マグネティックス研究会 (長崎)2017.8.7

「最新Tb拡散磁石の磁気特性評価と 市販Nd磁石のMFM磁区観察」

(株) K R I 山本日登志、松本信子

La de Shally A

京都 琵琶湖疏水 夷川水力発電所

モータ磁場解析シュミレーション値と実測値に なぜ差異が出るのか?

磁石に関する5つの前提(誤解?)

従来モータ設計では理想的磁石、理想的な条件が 前提となるシミュレーションソフトが使われてきた。

前提① 現物の磁石特性はカタログ値と同じ

前提② 磁石特性は均一 磁気特性, 温度特性、着磁特性、機械特性、電気抵抗、耐食性

前提③ 量産バラツキは無

前提④ 磁石材料の測定方法、評価方法は確立している

前提⑤ 磁石表面と内部は同一磁気特性である 最近はDy拡散、Tb拡散あるいは表面加工劣化。

平成29年電気学会全国大会(富山)2017.3 静岡理工科大学共同研究 PMモータ用ネオジム磁石の3次元熱減磁検討;磁石内部磁場測定(1) 拡散磁石; データベースが少なく モータ設計がしずらい

磁石関連受託業務の一例 (2)

- * TiN処理Nd標準磁石と測定データのご提供; 磁石メーカ、測定メーカ 含む累計約10社、約30試料、 国内磁石標準測定方法として浸透?
 * 大型EV,HV用、FA用ロータ解体、使用磁石分析
 - * HV用ロータの熱脱磁測定、大型ロータ表面磁場分布
 - * 傾斜ギャップ磁気回路作製
 - * 磁性流体駆動用ハルバッハ磁気回路作製
 - * エラストマー新磁石開発 (同志社大、名古屋工大共同研究、特許出願3件)
 - * 磁石内部磁場測定と熱減磁評価 (静岡理工科大共同研究)

* 磁石MFM分析

- * 軟質ワイアー材(10-100µ)磁化特性VSM測定
- * 外国紙幣の微小磁場分布検出
- * ムール貝の稚貝の磁場死滅効果検証
- * 磁場活性化汚泥処理の検討
- * ハイパーサーミアの特性評価

IEC標準化

ロータ評価

エラストマー

新磁石

磁石微細分析

その他依頼

磁気回路作製提供

「拡散磁石」 第2世代Nd磁石の時代に突入へ

一例として引用、信越化学Web KRI追記

7. 測定結果 室温(23℃)測定結果

A-1~A-4 _減磁曲線 拡散前後

7. 測定結果 室温(23℃)測定結果

B-1~B-4_減磁曲線

粒界拡散磁石の磁気特性

T b 拡散磁石の一例 a) 拡散前 (n=2) b) 拡散後 (n=2)

約0.8MA/m (10 kOe) の大幅なHcJ上昇

	拡散前 => 拡散後
Br	1.414T(14.14kG) => 1.393T(13.93kG)
HcJ	1.057MA/m(13.280kOe) => 1.847MA/m(23.204kOe)

9

7mm立方体

拡散磁石試験片寸法予備検討 試料;7mm,5mm,1.3mm 着磁;8Tesla

1.3mm立方体

1.3mm拡散磁石測定評価実績; 約120個以上データ蓄積! (2015.4- 2017.6実績)

課題; 角形性Hk評価

5mm立方体

拡散磁石の試験片サンプリング法

<Three depth sampling>

<Five depth sampling>

拡散磁石のFive depth法結果例

Tb拡散面からの深さ(mm)

<結論> Five depth 法で拡散磁石の 深さ方向磁気特性評価法が 確立が出来た。 今後モータ、自動車ユーザ向け 磁場解析データベースとして提供 出来るものと考えている

市販Nd磁石の磁区観察

Nd₁₅Fe₇₇B₈磁石 消磁状態 (c面)

市販焼結Nd磁石のMFM観察例

試料; 市販NF磁石高保磁力材 HcJ=1900kA/m (24kOe)
試料寸法; 10X10X6mm (pc=1.43)
観察面; c面
倍率; 20μm視野、50μm視野

測定手順;

8Teslaフル着磁→ MFM → 熱減磁(140℃x1hr) → MFM または 熱減磁(170℃x1hr) → MFM

- 1. フル着磁
- 2.140℃熱脱磁後
- 3.170℃熱減磁後

観察視野はランダム

1. 測定装置

MFP-3D Infinity 原子間顕微鏡システム オックスフォード・インストゥルメンツ株式会社

特徴;

- 1. 高感度
- 2. 磁場可変; Hmax= +/- 0. 8 Tesla
- 3. 温度可変; 室温 から 250℃
- 4. 雰囲気; 大気中
- 5. 試料状態に合わせこむ非常にみかなパラメータ設定が必要

MFM-9 (予稿集a)

MFM-8 (予稿集b)

TP-B4-18

フル着磁 20µm□ TP-A1-3

20µm

MFM-7 (予稿集c)

MFM-6 (予稿集d)

16

170℃熱脱磁 20µm□

17

20µm□

95

90

170℃熱脱磁 20µm□

10

μm

Pinned in the grain

(red arrow)

170°C x 2hrs

170℃熱脱磁 20µm□

10

μm

15

170°C x 2hrs

5

20

70

MFM-5 (予稿集h)

TP-B4-27

170℃熱脱磁 50µm□

Nd₂Fe₁₄B単結晶

1.3mm角拡散微小磁石の評価方法の種々検討

加工方法検討

12. 参考

Nd磁石の重ねあわせ条件によるデータ値の違い

		Br	Hcj	Hcb	(BH) max	Hk90	Hk95	7mm立方体一体型の値を100%とした時の割合(%)						
		(T)	(MA/m)	(MA/m)	(kJ/m3)	(MA/m)	(MA/m)		Br	Hci	Hcb	(BH)	Hk90	Hk95
No.1	7mm立方体 一体型	12.67	20.72	12.02	37.60	18.32	11.62					max		
No.2		12.66	20.71	12.02	37.60	18.39	11.87	一体型	100	100	100	100	100	100
No.3	3.50mm 2枚重ね	12.64	20.52	11.94	37.30	17.84	10.40	3.50mm 2枚重わ	99.68	98.91	99.33	99.2	97.28	91.91
No.4		12.61	20.46	11.94	37.30	17.87	11.19	2,34mm		~~~~				~~~~
No.5	2.34mm 3枚重ね	12.60	20.60	11.86	37.10	17.64	9.74	3枚重ね	99.64	99.69	98.84	98.94	96.21	83.65
No.6		12.64	20.70	11.90	37.30	17.68	9.91	1.75mm 4枚重ね	99.53	98.87	98.17	98.14	92.7	76.42
No.7	1.75mm	12.59	20.48	11.81	36.90	17.20	9.36	1.00mm	99.41	9819	9676	97.07	80.8	63.6
No.8	4枚重ね	12.62	20.48	11.79	36.90	16.83	8.59	7枚重ね	00.11	00.10	00.10	01.01		
No.9	1.00mm 7枚重ね	12.59	20.34	11.63	36.50	14.83	7.47	取入一取少 の差 (%)	0.59	1.81	3.24	2.93	19.20	36.40

く復習として>

H. Nakamura, K. Hirota, T. Minowa and M. Honshima: J. Magn. Soc. Jpn., 31, 6 (2007).

粒界拡散

逆磁区が発生する 主相表面のみに Dyを局在化させる

拡散させるDyやTb含有化合物の層 1.メタル:スパッタリング、蒸着 2.フッ化物:DyF₃, TbF₃ 3.酸化物:Dy₂O₃, Tb₄O₇

*2012年KRIワークショップ講演(明治大学徳永先生)

KRI追記; Tb拡散イメージ図 24

粒界拡散の様子(模式図)

b) 拡散後

拡散前

粒界拡散と粒内拡散の 割合が良好な場合(粒内拡散小)

(粒界のみに拡散,現実にはありえない)

*2012年KRIワークショップ講演(明治大学徳永先生)